Subtype-specific effects of lithium on glutamate receptor function.
نویسندگان
چکیده
We report that substitution of sodium with lithium (Li+) in the extracellular solution causes subtype-specific changes in the inward and outward currents of glutamate receptors (GluRs), without a shift in reversal potential. Li+ produces an increase of inward and outward currents of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors and decreases in the currents of kainate (KA) and N-methyl-D-aspartate receptors. The greatest effect of Li+ was observed with GluR3. A concentration-response curve for GluR3 reveals that the potentiation caused by Li+ is greatest at saturating agonist concentrations. GluR1, which shows no potentiation by Li+ at 100 microM KA, shows a small but significant potentiation at saturating KA and glutamate concentrations. The effects of Li+ on outward current, where Li+ is not the primary charge carrier, and the lack of reversal potential shift argue for a mechanism of potentiation not associated with Li+ permeation. This potentiation of current is specific for Li+ because rubidium, although causing an increase of inward current, shifted the reversal potential and did not increase outward current. The effects of Li+ are different for KA, a weak desensitizing agonist, and glutamate, a strong desensitizing agonist, suggesting that Li+ might interact with a mechanism of desensitization. By using cyclothiazide (CTZ) to reduce desensitization of GluR3, we find that for low concentrations of KA and glutamate potentiation of the response by a combination of CTZ and Li+ is no greater than by CTZ or Li+ alone. However, at high concentrations of agonist, the potentiation of the response by a combination of CTZ and Li+ is significantly greater than by CTZ or Li+ alone. This potentiation was additive for glutamate but not for KA. At high agonist concentration in the presence of CTZ, the intrinsically lower desensitization produced with KA-evoked responses may preclude Li+ from potentiating the current to the same degree as it can potentiate glutamate-evoked responses. The additive effects of CTZ and Li+ were unique to the flop variant of GluR3.
منابع مشابه
Metabotropic glutamate receptors and their ligands applications in neurological and psychiatric disorders
Metabotropic glutamate receptors (mGluRs) consist of a large family of G-protein coupled receptors that are critical for regulating normal neuronal function in the central nervous system. The wide distribution and diverse physiological roles of various mGluR subtypes make them highly attractive targets for the treatment of a number of neurological and psychiatric disorders. The discovery of ...
متن کاملO 3:Therapeutic Potential of a Novel NMDA Receptor Subunit 2B Antagonist in a Mouse Model of Autoimmune Neuroinflammation
Glutamate-mediated excitotoxicity and neurodegeneration have been shown as pathophysiological hallmarks of multiple sclerosis (MS) and other autoimmune inflammatory CNS disorders. N‑Methyl‑D‑Aspartate (NMDA) receptors play a pivotal role in the mediation of neuronal glutamate excitotoxicity leading to cellular damage and apoptotic cell death. Current treatment approaches targeting glutamate exc...
متن کاملPii: S0304-3940(99)00878-2
Analysis of splice variants and site-directed mutants of the AMPA receptor GluR3 expressed in Xenopus oocytes has shown that lithium produces a large potentiation of the GluR3 ̄op splice variant and suggested that lithium might inhibit rapid desensitization, which is characteristic of this receptor (Karkanias, N. and Papke, R., Subtype-speci®c effects of lithium on glutamate receptor function. ...
متن کاملInteractive Effects of Acute and Chronic Lithium with Dopamine Receptor Antagonists on Naloxone-Induced Jumping in Morphine-Dependent Mice
In the present study, interactive effects of D1 and D2 dopamine receptors antagonists and different periods of lithium pretreatment on morphine dependence in mice have been investigated. This study was designed to investigate whether the hypothesis that lithium and dopaminergic mechanisms via their effects on phosphoinositide pathways and calcium flux could influence morphine withdrawal respons...
متن کاملInteractive Effects of Acute and Chronic Lithium with Dopamine Receptor Antagonists on Naloxone-Induced Jumping in Morphine-Dependent Mice
In the present study, interactive effects of D1 and D2 dopamine receptors antagonists and different periods of lithium pretreatment on morphine dependence in mice have been investigated. This study was designed to investigate whether the hypothesis that lithium and dopaminergic mechanisms via their effects on phosphoinositide pathways and calcium flux could influence morphine withdrawal respons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 81 4 شماره
صفحات -
تاریخ انتشار 1999